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Abstract

A number of researchers have
shown the ability of magnetic reso-
nance imaging (MRI) and computer
tomography (CT) imaging to detect
internal defects in logs. However, if
these devices are ever to play a role
in the forest products industry, au-
tomatic methods for analyzing data
from these devices must be devel-
oped. This paper reports research
aimed at developing a computer.
vision system for locating and iden-
tifying internal defects in hardwood
logs using CT imagery. This vision
system can conceptually be divided
into three components: a CT scan-
ner based image acquisition
system, a low-level module for im-
age segmentation, and a high-level
module for defect recognition. The
processing steps involved in this
vision system include CT data col-
lection, image segmentation, three-
dimensional volume growing, and
a rule-based expert system for de-
fect recognition. To date, progress
has been made on all these process-
ing steps though the work on devel-
oping a rule-based expert system is
really just getting underway. Ex-
perimental data will be presented to
show the progress that has been
made on this vision system devel-
opment.

|—Introduction

A number of investigators have
shown that magnetic resonance im-
aging (MRI) [2] and computer
tomography (CT) imaging [4][5][8]
can be used to detect internal de-
fects in logs. However, if this tech-
nology is to ever be used by the

forest products industry, automatic
methods for locating and identify-
ing internal log defects must be de-
veloped. This paper reports research
aimed at developing a computer
vision system for locating and iden-
tifying internal defects in hardwood
logs using CT imagery.

There are a number of reasons for
wanting to locate internal defects in
logs. First, tree-length roundwood
may need to be cut prior to further
processing into lumber or veneer.
With internal defect information, it
becomes possible to cut roundwood
so that all defects are either removed
or are isolated so that they appear at
either end of the cut log section. This
leaves larger areas of valuable clear
wood in the log, and gives it a higher
value. Second, it must be decided
whether a log is a saw log or a ve-
neer log. Since a veneer log is worth
approximately ten times as much as
a saw log, it is very important that
this decision be made as accurately
as possible. Whether a log is a saw
log or a veneer log depends on the
number and distribution of its inter-
nal defects. If the decision is to saw
the log into lumber, studies [6] have
shown that the value of the lumber
sawn from a log can be increased
from seven up to twenty-one per-
cent if optimum positioning is used
during saw up. Optimum position-
ing depends on the location and
identification of internal log defects.
The basic goal in sawing hardwood
lumber is to create boards with as
much clear face as possible. While
no formal studies have been con-
ducted, positioning also would seem
to play an important role in deter-
mining the value of veneer that can

reproduced from a veneer log. Once
again the best positioning is the one
that gives veneer with as much clear
face as possible.

A nondestructive way to infer inter-
nal log structure is to use either MRI
or CT systems to image the internal
structure of logs. While both of these
systems have their advantages and
disadvantages, concentration here
will be paid to CT imagery. There
are a number of reasons for wanting
to concentrate on CT imagery. First,
CT imaging systems are less expen-
sive than MRI units and will prob-
ably stay so well into the future. CT
units do not require the expensive
superconducting magnet required
by MRI units. Next, CT units are
seemingly “safer” to use in the saw-
mill or veneer plant. The magnetic
field required by MRI units can pull
any magnetic material out of a log
as it is being imaged. If this happens
serious damage to the superconduct-
ing magnet would most certainly
occur. The magnetic field induced
around the “outside” of the magnet
is also very intense. Care would have
to be taken not to get any iron or
steel tools too close to the MRI unit
or they to could be drawn toward
the superconducting magnet.

Just as in the case of MRI, collecting
CT imagery of a log is currently
very expensive. Most available CT
scanners are located in hospitals,
and these units cost at least $600,000
apiece. Given the current high cost
of medical CT units, the economic
viability of using these systems on
forest products applications must
be a concern. However, there area
number of good reasons to believe
that the cost of industrial inspection
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versions of these machines will go
down in the future. First, a signifi-
cant percentage of the total cost of a
CT machine is the cost of the com-
puter and special purpose hardware
used to do the reconstruction. Intel
Corporation estimates that a bench
mark microprocessor by the year
2000 will be able to execute 2 billion
instructions per second, a 100 fold
increase over the performance of
today’s benchmark processors. Fur-
ther memory costs are continuing to
decline in what appears to be a trend
for all the 1990’s. Hence, the cost of
the processing units required to both
reconstruct CT images as well as
perform the automatic analysis
should markedly decrease in the
years to come. Another significant
cost component in today’s units is
the research and development
(R&D) cost. Current units are aimed
almost exclusively at the medical
market, a highly competitive mar-
ket of very limited size. Given a
relatively high volume market, such
as the one that would be associated
with the hardwood forest products
industry, the R&D cost could be
spread over a larger number of ma-
chines and hence the R&D cost per
machine should be substantially
lower. Hence there are reasons to
believe that within the next decade
CT seamers may become inexpen-
sive enough to be applied to a num-
ber of industrial inspection prob-
lems including locating and identi-
fying defects in hardwood logs.

CT imaging of a hardwood log along
its length produces a stack of cross-
sectional slices representing the
three-dimensional structure of the
log. The gray level value of each
picture element (pixel) of a CT im-
age is called its CT number. CT num-
bers typically range from -1024 to
1024 (12 bits of image data for each
pixel). The CT number represents
the calculated attenuation of the
volume represented by the CT pixel
to x-ray transmission. For this rea-
son some investigators call CT pic-
ture elements “voxels” instead of
pixels. The CT number of “0” typi-
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call y corresponds to the attenuation
of water. Since a material’s x-ray
attenuation is dependent on the
material’s density, CT numbers rep-
resent density measurements of the
various structures within a log. CT
images (slices) can have a variety of
different resolutions. The resolution
depends not only on the number of
pixels appearing in the imaging
plane but also on the “thickness” of
the imaging plane. To give one an
idea of the amount of data that can
be created during the examination
of a log suppose that 256x256 pixels
are collected in the imaging plane
and suppose that the imaging plane
thickness is 8 millimeters. At this
resolution a log section 10 feet long
will generate approximately 47
megabytes of image data.

Although scanner cost is a problem
in terms of the economic viability of
CT scanners in sawmills, perhaps
the most serious technical difficul-
ties are image acquisition time, im-
age reconstruction time and auto-
mated analysis processing time.
Since a rate of three logs per minute
is not uncommon in many sawmills,
little time is available for acquiring,
reconstructing, and processing an
extremely large amount of image
data. The amount of information
that must be processed is a major
problem for both present human
operators and for any future auto-
matic system. A very important re-
cent development with regard to
image acquisition has been the scan-
ning electron beam CT scanner cre-
ated by Imatron, Corporation [8]. In
its ultrafast mode, the Imatron CT
scanner can acquire a pair of ana-
tomically contiguous slices at the
rate of thirty-four (34) images per
second. Compared with the rate of
about one (1) slice per second for the
third and fourth generation CT scan-
ners, this acquisition time speed im-
provement is substantial. It repre-
sents a basis upon which a commer-
cially viable CT scanning technol-
ogy could be built. Admittedly cur-
rent image reconstruction times and
current automated image analysis

times are still much slower than
would be required of commercially
useful systems. But as was men-
tioned above, future developments
in microprocessor technology
should help alleviate these two prob-
lems as well.

The computer vision system being
developed at Virginia Tech for lo-
cating and identifying internal de-
fects in hardwood logs using CT
imagery can conceptually be divided
into three components: a CT scan-
ner-based data acquisition system,
a low-level module for performing
image segmentation, and a high-
level module for recognizing the
defects located by the low-level seg-
mentation system. The capabilities
of these various modules will be
experimentally demonstrated.

ll—Developing a CT Image
Database

To develop any computer vision
system requires a good deal of ex-
perimentation. The resulting vision
system will be no better than the
database of images used in its de-
velopment. If the database of im-
ages is representative of the range of
images the system will have to pro-
cess in the real world environment,
the system, once it is developed,
will probably be effective in solving
the problem it was intended to solve.
If on the other hand the database of
images used to create the system is
not representative of the real world
image data the computer vision sys-
tem will have to handle, then the
resulting system will probably not
be able to perform its task effec-
tively.

Because of the above, it is very im-
portant at the beginning of any com-
puter vision development activity
to spend a good deal of time prepar-
ing an appropriate image database.
At the beginning of this research
activity there was only one data-
base of CT images of hardwood logs
available. This database was the one
created to perform the research work



reported by [8]. This database was
established by investigators at Mis-
sissippi State University in coop-
eration with the Southern Forest Ex-
periment Station, U.S. Forest Ser-
vice, and with the Imatron Corpora-
tion. This database consisted of a
series of 256x256 by 8 millimeter
contiguous slices of a red oak log
section 12 feet long. This database,
while containing a number of slices,
is not very satisfactory for computer
vision research for a number of im-
portant reasons. First and foremost
was the way in which “ground
truth” was established on this data-
base. Whenever one is attempting
to create an automatic method for
analyzing images, he must be able
to compare results obtained from
the automatic analysis with the way
the image should actually be inter-
preted, i.e., the ground truth inter-
pretation. An image interpretation
is the creation of distinct regions
within the image and the assign-
ment of labels to these regions.

To establish ground truth for a CT
image slice of a log requires one to
cut the log across the imaging plane
used to create the slice and examine
the log at the position of the cut to
determine the location and extent of
each defect. If a log has multiple
contiguous image slices taken from
it, establishing the ground truth for
each of the slices becomes some-
what more complicated since the
log must be accurately cut a number
of times without any accumulative
error build up. The problem is to
make sure the surface of the log face
visually inspected is accurately reg-
istered with the CT image associ-
ated with this surface.

The Mississippi State database was
collected with the idea of being able
to determine the ground truth for
an entire log. The objective was to
use this ground truth data to help
determine the potential benefit of
using internal defect locations to
optimally position a log for cutup.
As such, an entire log had to be
scanned and the log had to be

handled just as it came from the
forest. Because of this there was only
moderate registration between a log
surface obtained from the cutup
operation and the associated CT im-
age slice obtained from Imatron.

Another problem with this data is
that the ground truth information
was in the form of hand digitized
outlines. Hence, while one could
compare the results of computer
processing with the labeling as-
signed to these outlines, one could
not get any feel for how serious any
error might be. The final problem
with this database is that it repre-
sents only one species, albeit a very
important species, red oak.

To address these problems, a new
CT image database was created for
use in this research. The methodolo-
gies used to create this new data-
base differed markedly from those
used in creating the Mississippi State
database. First, collecting CT imag-
ery of logs, or for that matter any-
thing else, is very expensive. Hence,
it is very important that each slice
provide as much information as pos-
sible. For the purposes of develop-
ing a computer vision system the
“important information” contained
in each slice of CT imagery is the
way different defects manifest them-
selves in relation to one another and
to clear wood. Since the vast major-
ity of any log is clear wood, the
really important part of any CT im-
age slice is that portion of the slice
that represents an internal log de-
fect. Hence, low grade logs were
individually selected for use in cre-
ating the database. ,

The log diameters considered
ranged from 10 to 16 inches. Each
log was sawn so that it had one flat
face. The reason for creating the flat
face was so that the log could be
positioned on the CT scanner. The
objective was to create image slices
perpendicular to plane defined by
this flatface. From each log, one or
more 15 to 28 inch sections were
selected. The sections were selected
based on an examination of log bark.

The purpose of this examination was
to determine the types of defects
located internal to the section. The
sections selected were cut from the
logs. Obviously, each section also
had one flat face, a face it inherited
from the log from which it was cut.
After each section had been cut from
the log, a straight line cut was made
down the length of the section, a cut
that runs approximately down the
middle of the section. This straight
line cut was made onto the top of the
section while the section was lying
on its flat face. The straight line was
used to position the section on the
CT scanner so that the translation
used to move the section into the
scanner would be in the direction
defined by the straight line cut. The
flat face and the line cut were used
so that good registration could be
obtained between a cut made
through a section and the associ-
ated CT image slice. All the above
described processing was per-
formed in a manner to prevent any
drying of the log sections. The ob-
jective was to obtain images of
“green” material.

To provide some information about
the variations caused by interspecies
differences in hardwoods, two spe-
cies were selected for consideration,
red oak, a high value ring-porous
species, and yellow poplar, a low
value diffuse-porous species.

The log sections were stored in cold-
storage until they could be imaged
on a CT scanner. The scanner used
was one at a local hospital only a
few minutes drive from the cold
storage location. The CT scanner
used was a Seimans Somaton DR2
system. Slice spatial resolution was
2.5x2.5 millimeter within slice plane
and 8 millimeter thickness. Each slice
represented a 256x256 image with
16 bits of CT number information.
Once scanned the images were
stored on 10 inch floppy disks ma-
chine readable by Digital Equipment
PDP-11 computers running the RT-11
operating system. The images on
these double density disks were

Conners—3



transferred to a VAX 11/785 com-
puter for processing. All the CT
images were then stored on com-
puter tape. Several tape backup cop-
ies were made to assure that the CT
image data base would not be lost.

After the sections were scanned they
were returned to cold storage.
Within a very few days each section
was removed from cold storage and
was cutup using a Woodmizer saw
into very thin slice sections that cor-
responded as closely as was pos-
sible to the CT image slices taken by
the Seimans scanner. Each thin sec-
tion slice was labeled, washed,
bagged with the other thin slices cut
from the same section, and returned
to cold storage. The goal was to
perform all this additional process-
ing without drying out the thin
wood sections.

The last step involved in creating
the CT image database was to take a
color photograph of each thin wood
slice. Appearing in each photograph
is information that allows one to
determine the CT slice number for
which this thin wood slice is sup-
posed to correspond, the log section
from which the thin slice was cut,
the log from which this log section
was cut, and the species of this log.
The film negative and the 5x7 color
print of each thin wood slice have
all been saved for archival purposes.

A total of 490 CT image slices, color
photographs, and film negatives
comprise this image database.

lI—3-D Segmentation by Volume
Growing

The original 12-bit CT images of
hardwood logs contain several types
of picture elements (pixels), such as
air (background), clear wood, knots,
splits, bark, and so on. Besides, there
is a textural structure on each of the
CT log images that represents the
annual ring structure of the
tree growth. These fine rings are vis-
ible both in the sapwood and heart-
wood, and they tend to grow in the
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same textural pattern or direction-
ality. To effectively distinguish de-
fects from clearwood and air, we
find it necessary to eliminate these
annual rings before segmenting an
image into a number of uniform
regions.

One of the major characteristics of
the annual rings is their high fre-
quency property. This is so because
a typical tree will grow one annual
ring each year and the distribution
of these annual rings is much denser
compared with the grain patterns of
other components of the log. In the
signal frequency domain, they mani-
fest themselves as a high frequency
component of the digital image sig-
nal. In general, to eliminate high
frequency component from a digi-
tal image, the linear or nonlinear
lowpass filters are adopted to
smooth the image. These filters are
composed of a set of coefficients
that can be computed or updated
according to their input image sig-
nal. Depending on the dimensions
of the input digital image, the filter
can be 2-dimensional or 3-dimen-
sional. If the filter is 2-dimensional,
it operates on the image data in a
square window of a certain size. If it
is 3-dimensional, it operates on the
data in a cubic window.

Our goal in image smoothing is to
eliminate the annual ring structure
while preserving defects on the im-
age. For this purpose, a nonlinear
adaptive filter was used that is par-
ticularly efficient. It adaptively corn-
putes a linear combination between
a noisy image and a restored ver-
sion of this noisy image obtained by
an initial filtering. The purpose of
this procedure is to improve image
restoration performance by using a
rather simple structure. In contrast
with previous work, this approach
is based on a filter of fixed structure
rather than on simplified assump-
tions about the image signal model.
Simulation and experiment ex-
amples indicate that it is capable of
reducing noise efficiently while pre-
serving image details. This is espe-

cially attractive to our image
smoothing problem since it can
smooth out the annual ring struc-
ture while preserving the fine splits
and checks.

As in most cases, the observed im-
age signal at an image pixel consists
of two uncorrelated components:
true signal and corrupting noise.
Filtering or smoothing is adopted to
improve the signal-to-noise ratio at
most points of the image. However,
in regions of heavy edges or texture,
filtering may degrade the image
more than it actually reduces noise.
In this case, a compromise would be
not to do any filtering on the data
(such as splits). On the other hand,
for non-textured or non-edged ar-
eas (such as clearwood), we may
want to filter them using the filter-
ing operation. Accordingly, to ob-
tain an optimal estimate of the true
image signal at point, a weighted
sum of the noisy signal and its fil-
tered version is constructed at an
estimate of the true image signal.
The coefficients of the filter are the
parameters that need to be com-
puted from the image data.

These filter coefficients are adjusted
so that: (1) for edged regions (such
as splits), the noisy observation is
kept by down weighting the restored
signal; and (2) for non-edged re-
gions (such as clear wood), the ini-
tially restored signal is kept by down
weighting the noisy observation. It
is noted that the pixel value at a
point on the kth slice is closely corre-
lated with those at its neighboring
points on the (k - 1)th and (k + I)th
slices in a sequence. Hence one way
of improving the filtering perfor-
mance is finding the optimal solu-
tion for a least squares (LS) problem
defined in a 3-dimensional volume.
By solving this 3-dimensional prob-
lem, filter coefficients can be com-
puted from the image data in con-
secutive slices in a sequence. The
typical values for the filter window
size are from 1 to 3 pixels, depend-
ing on input images. To calculate
the optimum filter coefficients a LS



criterion is introduced to minimize
a quadratic error index. With the
filter coefficients so computed, the
original 12-bit image is filtered on a
pixel-by-pixel basis. The output
from the filter is a filtered image
which is to be segmented by a pro-
cedure described next.

Images that have first been filtered
using the above filter are
thresholded on an image-by- image
basis using a multi-thresholding
method. A histogram h(k) is com-
puted first from the filtered image
data and smoothed with a Gaussian
function, resulting in a smoother
histogram on which the
thresholding operation is based. An
ordinary CT log image consists of
pixels representing background,
decays, splits, knots, barks, and clear
wood. Accordingly, three thresh-
olds {T,T, T, are determined from
the histogram h(k). They are used to
divide each image slice into a num-
ber of uniform regions. These three
thresholds {T,T, T} are determined
according to the following criteria:

1. T, TETET2-d, where T,and d
are adjustable constants.

2. T, the location of the maximum of
h(k)., the second derivative of h(k).

3. T,: the location of the first zero-
crossing of h(k),, the first derivative
of h(k).

Image grey level thresholding us-
ing the above three thresholds,
{T,T,T.}, produces a number of re-
gions that represent potential de-
fects, as well as a small number of
spurious defect regions of different
sizes. In order to facilitate the later
processing steps and to improve
defect recognition accuracies of the
vision system, this later category of
regions needs to be eliminated be-
fore region detection. For this pur-
pose, morphological operations
such as erosion and dilation defined
by morphological masks are applied
to the segmented image. The mor-
phological operations are applied
to the CT images to eliminate spuri-
ous regions and to smooth defects.

In our vision system, an image ero-
sion operation is first performed on
the segmented image to get rid of
small spurious areas. Then an im-
age dilation is performed to restore
those pixels of the real defect re-
gions that have been eliminated by
the erosion operation.

The above segmentation-filtering
process produces a number of uni-
form regions on each image which,
when grouped together in 3-d, rep-
resent the 3-d information of differ-
ent wood defects inside a log. A 3-d
version of the connected component
labeling algorithm [7], called 3-d
volume growing, is adopted here to
segment or group individual 2-di-
mensional regions on different slices
into 3-d integral objects.

Inside a log, defects manifest them-
selves in varying shapes. In 3-d, a
knot would appear like a parabo-
loid, bark like a generalized cylin-
der, a hole like a cylinder, and a split
like a ribbon, etc. To identify the
proper 3-d volumes of potential
defects, pixels with similar CT at-
tributes on a number of segmented
images are grouped into connected
volumes, according to 6- or 18-neigh-
borhood connectiveness in 3-d.

The above segmentation approach
can also perform quantitative esti-
mation of structures of a 3-dimen-
sional object, and this volumetric

information can be used in recog- .

nizing unknown structure in a scene.
This estimation can be achieved by
counting the number of pixels that
have the same label assigned by a 3-
dimensional volume growing algo-
rithm modified from [71. An integer
value is preset as a threshold for
volume size against which all the
labeled volumes are to be compared.
Any volume of a size smaller than
this threshold value is eliminated
by merging it with its nearest neigh-
boring volume or merging it with
the background. This merging pro-
cess usually eliminates false defects
resulted from segmentation, and
retains the well-connected 3-dimen-
sional objects as defects, such as

knots, bark, splits, decays and holes.
Output from this 3-dimensional
volume growing algorithm is a num-
ber of 3-dimensional objects that are
to be recognized by the high-level
module discussed in the next sec-
tion.

IV—Defect Recognition-A Rule-
based Approach

Any defect type may manifest itself
in many different ways. For ex-
ample, knots represent a single type
of defect; however, their shape, den-
sity, size, and orientation can vary
greatly. Consequently, statistical or
analytical classification procedures
are difficult to implement success-
fully. Less exacting methods, there-
fore, may be better suited to this
type of problem. A heuristic, rule-
based recognition system was used
by [3] to identify defects in sawn
lumber. Rule-based systems are flex-
ible in that special rules can be writ-
ten to handle exceptions [1]. For
these reasons, the machine vision
system under study adopts a rule-
based approach to perform 3-d ob-
ject recognition.

For each of the 3-d volumes detected
by the above volume growing pro-
cess, statistical, geometric, and to-
pological features are readily com-
puted from the 3-d image data. Cur-
rently, 5 basic features have been
derived to enhance the separability
of bark, knots, and clear wood. Ad-
ditional features will be added to
the system as other defects need to
be recognized or as current defects
need to be distinguished better. The
following are brief descriptions of
the object features that may be com-
puted from a sequence of images:

(1) The mean value (MEAN)— This
feature is obtained by finding the
mean CT values for all pixels con-
tained in a volume. Because knots
have higher absorption rates than
clear wood, this is an important fea-
ture to identify defects.

(2) The variance value (VAR)— Sample
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variance of a volume is calculated as
in the calculation of MEAN above.
This is a useful feature to distin-
guish bark from knots because they
have different variance values.

(3) The minimum distance (DIST)—
This is taken as the distance from

the centroid of a volume to the Z-
axis. Bark (except for included bark
pocket) is a great distance away from
the center (Z- axis) of the log, there-
fore, it has a large DIST value. Clear
wood is near the center of the log,
and it has a small DIST. Therefore,
this is a good feature to identify
bark.

(4) The predictor (TOUCH)— This is a
binary predictor with value 1 or 0.
Valuel (O) indicates a volume touch-
ing (not touching) the background
(air). Since knots usually do not
touch air, this is a good feature to
differentiate knots from other ob-
jects.

(5) The Volume (VOLM)— This is the
3-d volume occupied by an object.
Clear wood has a much larger vol-
ume than any other objects in a log.
Splits and holes usually have a small
volume. Therefore, this is a good
feature to distinguish clear wood
from defects, and splits and holes
from the remaining defects.

Each object has a confidence vector
to describe the belief that the object
belongs to each defect category.
From the population distribution of
a given feature, we can derive thresh-
old values that separate the popula-
tion of values for that feature into
discrete classes. To properly define
ranges on the feature distributions
for different linguistic qualifiers, a
group of threshold values are deter-
mined using a set of training data.
Threshold values are visually deter-
mined by the peaks and valleys on
the histograms of individual fea-
tures. Linguistic qualifiers, such as
“high” and “low”, label these
classes. An evidence function, ex-
pressed as a discrete or continuous
step-type function, can be used to
relate linguistic qualifiers and lev-
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els of evidence for various defects.
Fig. 1 shows three examples of such
evidence functions f(v) for feature v =
VAR for the defects bark, knots, and
clear wood. According to these step-
type functions, a linguistic qualifier
L (for Low), M (for Medium), or H
(for High) is associated with ranges
of values of the feature variable v.
Here Tl and T2 are two thresholding
values obtained from a histogram
of the feature v. For each feature
value computed from image data,
such functions assign individual
values to the confidence vector for a
candidate volume. This is in fact a
voting process where a higher vote
is given to the strong evidence and a
lower vote to the weak one.

To use prior knowledge about dif-
ferent categories of defects to clas-
sify a candidate object, a correspon-
dence must be established between
the linguistic qualifiers and possible
defect manifestations within a log.
A production system or rule-based
approach is adopted since it easily
implements this type of reasoning.
There are many ways to combine
feature values and decision para-
digms to make rules. Antecedent
conditioning could refer to the value
of a single feature, the values of all
the features, or the values of some
subset of the features. The conse-
quent action could make a decision
on membership or non-membership
in a class, or simply contribute evi-
dence to that decision.

In our approach, a production sys-
tem with simple conditions was
built; each rule considers one basic
feature. The action of a rule is to
contribute positive evidence (1.0) to
classes in which the feature is usu-
ally present, negative evidence (-
1.0) to those in which it is usually
absent, and no evidence (0.0) to the
rest. To accommodate situations
where the feature is present occa-
sionally and absent at other times,
half evidence (0.5 or -0.5) is contrib-
uted to the classes. The rules in a
production system are of the fol-
lowing form

IF (conditions) THEN (actions).

In implementing rules, individual
rules are grouped into conjunctive
rules, where the action part con-
tains several confidence value as-
signments. As an example, the con-
junctive rule Rule-Touch using fea-
ture TOUCH is expressed as

Rule-Touch : vote to 3 classes by
feature TOUCH

if(touch(k)=I) then (“touching™)
cv(touch, bark) = 1.0

cv(touch, knot) =-0.5

cv(touch, wood)= 0.5

elseif(touch(k)=0) then (“not touch-
ing”)

cv(touch, bark) = 0.5

cv(touch, knot) = 1.0

cv(touch, wood) =-0.5

In this rule, variable touch(k) is the
TOUCH feature value of the kth vol-
ume, and cv(touch, bark), cv(touch,
knot), and cv(touch, wood) repre-
sent the confidence values assigned
by rule Rule-Touch to bark, knots,
and clear wood respectively. This
rule provides strong positive evi-
dence (1.0) for bark that touches the
background, whereas it provides
weak negative evidence (-0.5)
against a knot that touches the back-
ground.

After applying all 5 rules to a candi-
date volume, a matrix of confidence
values cv(i,j), (i=1,2,...5,j=12,3))
are generated. The total vote for an
object, denoted by TV(j), is the total
confidence value obtained by add-
ing up all the confidence values as-
signed to the object by all 5 rules.
For an expert system comprised of
N, rules, this total vote can be ex-
pressed as

N,
TV(§) = Y_cv(i,j),

i=]l



In our case, N,, the number of rules,
is equal to 5. The class with the
highest total vote is designated as
the class to which the object be-
longs. The next section shows some
experimental results of applying
these rules to CT images taken from
a hardwood log.

V—Experimental Results

The method described in this report
was applied to recognize CT images
taken from red oak and yellow pop-
lar logs that contained bark, knots,
and clear wood. The original 12-bit
images were 256 x 256 with pixel
resolutions 8.0mm between slices
and 2.5mm within a slice. After 3-d
smoothing, images were segmented
one by one, and the connected com-
ponents on all slices were grouped
together to produce a number of 3-
d volumes of unknown defect type.

Experiments were conducted using
the above described approaches to
process CT images and to recognize
wood defects from several red oak
and yellow poplar logs. Fig. 2 shows
an original red oak CT slice, its his-
togram, and segmented images
without filtering and with filtering.
It is noted that a thin split and two
knots, as well as bark, are picked up
by the vision system. Fig. 3 demon-

strates the results of image filtering
and segmentation with 2 different
samples of red oak. On the upper
part of the picture, one can observe
the bark, a brown decay, a split, 2
knots, as well as the clear wood
area. On the lower part, there are the
bark, a large brown decay with
darker splits, and several decolor-
ized clusters. Fig. 4 contains a se-
guence of 4 original CT slices, and
Fig. 5 is the result of performing 3-
d volume growing operation on
them. It is clearly seen that the sys-
tem has picked up several potential
defects from these 4 images.

In the defect recognition experiment,
a small set of CT slices were selected
from a sequence of the log images as
the training data. Feature distribu-
tions computed from this training
set defined a set of thresholding
values that were used to determine
the linguistic qualifiers of the fea-
ture values. Rules were then ap-
plied to individual candidate vol-
umes to assign confidence values to
different defect classes. Adding up
the confidence values contributed
to a volume by all rules, the object
was assigned the class that had the
highest total confidence value. In
the paper, recognition results from
one of these experiments with a yel-
low poplar log are illustrated. Fig. 6
presents the original CT images of 4

slices which contain bark, knots, and
clear wood. Fig. 7 contains the re-
sults of applying the above men-
tioned defect recognition method to
this sequence of segmented images.
On reviewing Fig. 6 and Fig. 7, it is
obvious that two pieces of bark
(marked as bl and b2) and one knot
(marked as kl) have been detected,
and that the clear wood and the
background (air) are also correctly
differentiated from the defects.

VI—Concluding Remarks

In this paper we have presented a
computer vision system that is de-
signed to inspect hardwood logs
using CT imaging. The main advan-
tage of this vision system approach
to log inspection is that it is possible
to locate, and identify defects inside
a log. Our aim is to demonstrate
usefulness of this approach. As an
example, we have taken CT log im-
ages and shown some defect recog-
nition results. Clearly, CT image
sequence analysis is a complicated
problem in practice. Therefore, the
approach presented in this paper
needs to be improved in order to
accommodate more complicated log
defects and to make the system more
robust. Furthermore, to more pre-
cisely identify each defect that has
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Fig. 1 An evidence function f(v) relates discretized values (L, M, H) for feature v = VAR with
evidence values for the defect bark (a). Knots (b) and clear wood (c) have different evidence
functions. The threshold values, T1 and T2, were established from the distribution of VAR values.
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been detected, more work is
needed to efficiently calculate
other measures rather than the
volume, such as the orientation
and minimum bounding vol-
ume. Nevertheless, the pro-
posed approach to wood inspe-
citon seems to indicate that a
relatively simple and efficient
vision system for hardwood log
inspection can be developed.
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Fig. 3 Upper: original and segmented images of ared oak slice RK11.22; Lower: images from a
different red oak sample Rk12.05.

Conners%49



Fig. 4 From upper left clockwise: 4 consecutive images from ared oak log (Log4.$4 to S9).
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Fig. 5 From upper left clockwise: 3-dvolume growing results of the 4 images in Fig. 4.
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Fig. 6 From upper left clockwise: 4 consecutive images from ayellow poplar log (yp01.02 to 05).
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alical slice 2

slice 3 slice 4

Fig. 7 From upper left clockwise: recognition results of the 4 imagesin Fig. 6. (The two pieces of bark
are marked as bl and b2, and a knot as k1.).
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